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Abstract Drought is a global phenomenon that occurs
virtually in all landscapes causing significant damage
both in natural environment and in human lives. Due to
the random nature of contributing factors, occurrence
and severity of droughts can be treated as stochastic in
nature. Early indication of possible drought can help to
set out drought mitigation strategies and measures in
advance. Therefore drought forecasting plays an
important role in the planning and management of wa-
ter resource systems. In this study, linear stochastic
models known as ARIMA and multiplicative Seasonal
Autoregressive Integrated Moving Average (SARIMA)
models were used to forecast droughts based on the
procedure of model development. The models were ap-
plied to forecast droughts using standardized precipita-
tion index (SPI) series in the Kansabati river basin in
India, which lies in the Purulia district of West Bengal
state in eastern India. The predicted results using the
best models were compared with the observed data. The
predicted results show reasonably good agreement with
the actual data, 1–2 months ahead. The predicted value
decreases with increase in lead-time. So the models can
be used to forecast droughts up to 2 months of lead-time
with reasonably accuracy.

Keywords Kansabati catchment Æ ARIMA model Æ
SARIMA model Æ SPI Æ Forecasting

1 Introduction

Drought is considered by many to be the most complex
but least understood of all the natural hazards affecting
more people than any other hazard. Drought is a normal

feature of climate and its occurrence appears inevitable.
However, much confusion remains within the scientific
and policy-making community about its characteristics.
Research has shown that the lack of a precise and
objective definition of drought in specific situations has
been an obstacle in understanding drought. This has led
to indecision and inaction on the part of managers,
policy makers, and others (Wilhite and Glantz 1985,
Wilhite et al. 1986). The global climate change in recent
years is likely to enhance the frequency of droughts.
While much of the weather that we experience is brief
and short-lived, drought is a more gradual phenomenon,
slowly affecting an area and tightening its grip with time.
In severe cases, drought can last for many years, and can
have devastating effects on agriculture and water sup-
plies. It is very difficult to determine when a drought
begins or ends. A drought can be short, lasting for just a
few months, or it may persist for years before climatic
conditions return to normal. Like many countries
drought is common in India also and these drought
areas are mainly confined to the southern and western
parts of the country. In addition, there are few more
drought-prone pockets in other parts of India. Out of
3.28 million km2 of geographical area in India about
1.07 million km2 of land is subjected to different degrees
of water stress and drought conditions.

One of the basic deficiencies in mitigating the effects
of drought is the inability to forecast drought conditions
reasonably well in advance by either few months or
seasons. Accurate drought forecasts would enable opti-
mal operation of irrigation systems. Yevjevich (1967)
was among the first at attempting a prediction of
properties of droughts using the geometric probability
distribution, defining a drought of k years as k consec-
utive years when there are not adequate water resources.
Saldariaga and Yevjevich (1970) continued the devel-
opment of run theory, incorporating concepts of time
series analysis in formulations to predict drought
occurrence. Sen (1976, 1977) continued this work in
applying run theory to water resource predictions,
evaluating run sums of annual flow series. Rao and
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Padmanabhan (1984) investigated the stochastic nature
of yearly and monthly Palmer’s drought index (PDI)
and to characterize them using valid stochastic models
to forecast and to simulate PDI series. Moye et al. (1988)
developed a pertinent probability distribution based on
difference equations to forecast drought of prespecified
duration and average drought length of desired period.
Sen (1990) derived exact probability distribution func-
tions of critical droughts in stationary second order
Markov chains for finite sample lengths on the basis of
the enumeration technique and predicted the possible
critical drought durations that may result from any
hydrologic phenomenon. Kendel and Dracup (1992)
proposed a drought event generator using alternating
renewal–reward model. Loaiciga and Leipnik (1996)
modeled the occurrence of drought events by the re-
newal processes. Lohani and Loganathan (1997) used
PDSI in a non-homogenous Markov chain model to
characterize the stochastic behavior of drought and
based on these drought characterizations an early
warning system is used for drought management. Chung
and Salas (2000) used low-order discrete autoregressive
moving average (DARMA) models for estimating the
occurrence probabilities of drought events. Kim and
Valdes (2003) used PDSI as drought parameter to
forecast drought in the Conchos River basin in Mexico
using conjunction of dyadic wavelet transforms and
neural network.

There has been considerable research on modeling
for various aspects of drought, such as the identifica-
tion and prediction of its duration and severity. It is
rather easy to sense that a drought has set in, partic-
ularly during a cropping season. There is a need to
develop methods and techniques to forecast the initia-
tion/termination point of droughts. The ARMA mod-
els, pattern recognition techniques, physically based
models using Palmer drought severity index (PDSI),
standardized precipitation index (SPI), a moisture
adequacy index involving Markov chains, or the notion
of conditional probability, seems to offer a potential to
develop reliable and robust forecasts towards this goal
(Panu and Sharma 2002). Such research efforts would
be of considerable importance in mitigating the impacts
of agricultural droughts and/or short-term hydrological
droughts.

The stochastic models presented in this paper are
based on SPI as drought index. The SPI is used in this
study for the following advantages, which are discussed
by Hayes et al. (1999).

– The primary reason is that SPI is based on rainfall
alone, so that drought assessment is possible even if
other hydro-meteorological measurements are not
available.

– The SPI is also not adversely affected by topography.
– The SPI is defined over various timescales; this allows

it to describe drought conditions over a range of
meteorological, hydrological and agricultural appli-
cations.

– The fourth advantage of SPI comes from its stan-
dardization, which ensures that the frequencies of
extreme events at any location and on any time scale
are consistent.

– The SPI also detects moisture deficit more rapidly
than PDSI, which has a response time scale of
approximately 8–12 months. Hughes and Saunders
(2002) have demonstrated that SPI-12 exhibits a close
correspondence to the PDSI in studying drought cli-
matology for Europe.

The main objective of present study is to calculate
time series of SPI for multiple time scales and to develop
valid stochastic models to forecast and simulate SPI
series. Since the calculation of SPI is based on the
moving sum of rainfall series as part of the procedure,
linear stochastic models will be useful for forecasting the
SPI series. The importance for considering the present
study area is because of the following reasons. (a) The
basin is situated in an underdeveloped part of India, so
no study was conducted earlier for drought analysis, (b)
The people in the region are very poor and they mostly
depend on agriculture, so it is very important to analyse
the drought in the basin, and (c) The basin was affected
by severe droughts in the years 1965–1967 and around
1980s, which was for a longer duration. The severity of
drought in 1990s was for short period. Since the basin is
affected by short-term drought frequently (Mishra and
Desai 2005) it was necessary for the researchers to
investigate drought in the basin.

2 Background information on application of stochastic
models

The stochastic models, which are often known as time
series models have been used in scientific, economic and
engineering applications for the analysis of time series.
Time series modeling techniques have been shown to
provide a systematic empirical method for simulating
and forecasting the behavior of uncertain hydrologic
systems and for quantifying the expected accuracy of the
forecasts. Some of the literatures dealing with different
types of time series where stochastic models are as good
as ANN models can be found in literature (Brace et al.
1991; De Groot and Wurtz 1991; Caire et al. 1992;
Foster et al. 1992; Gorr et al. 1994).

The ARIMA model approach has several advantages
over others such as exponential smoothing and neural
network in particular, its forecasting capability and its
richer information on time-related changes. In most time
series, there is a serial correlation among observations.
This characteristic is effectively considered by ARIMA
model. This model also provides systematic searching
stage (identification, estimation and diagnostic check)
for an appropriate model. Characteristic of many types
of hydrologic time series has periodically varying
components. Data of this type may be modeled using a
linear stochastic model that is commonly referred to as
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autoregressive integrated moving average (ARIMA)
model (Lewis and Ray 2002). An inherent advantage of
the SARIMA family of models is that few model
parameters are required for describing time series, which
exhibit non-stationarity both within and across the
seasons. Some useful applications of these models in
seasonal river flow forecasting are reported in McKer-
char and Dellur (1974), Panu et al. (1978), Cline (1981),
Govindaswamy (1991) and Yurekli et al. (2005). Hy-
drologists have also widely used stochastic analogy for
the analyzing and modeling of hydrologic time series. It
is observed from literature that the type of model fits to
a particular time series is problem dependent. There are
two classes of stochastic models, which are described
below:

2.1 Nonseasonal models

Autoregressive (AR) models can be effectively coupled
with moving average (MA) models to form a general
and useful class of time series models called autore-
gressive moving average (ARMA) models. In ARMA
model the current value of the time series is expressed as
a linear aggregate of p previous values and a weighted
sum of q previous deviations (original value minus fitted
value of previous data) plus a random parameter,
However, they can be used when the data are stationary.
This class of models can be extended to non-stationary
series by allowing differencing of data series. These are
called autoregressive integrated moving average (AR-
IMA) models. Box and Jenkins (1976) popularized
ARIMA models. The general non-seasonal ARIMA
model is AR to order p and MA to order q and operates
on dth difference of the time series zt; thus a model of the
ARIMA family is classified by three parameters (p, d, q)
that can have zero or positive integral values.

The general non-seasonal ARIMA model may be
written as

/ðBÞrdzt ¼ hðBÞat ð1Þ

where / (B) and h (B) are polynomials of order p and q,
respectively.

/ðBÞ ¼ ð1� /1B� /2B
2 � � � �/pBpÞ ð2Þ

and

hðBÞ ¼ ð1� h1B� h2B2 � � � � hqBqÞ ð3Þ

2.2 Seasonal models

Many time series contain cyclic features. Very often in
hydrologic time series these features are of an annual
cycle primarily due to the earth’s rotation about the sun.
Such series are cyclically non-stationary. Once the
deterministic cyclic effects have been removed from a

series, the ARIMA approach can be applied to obtain a
linear model for the stochastic part of the series. Box
et al. (1994) have generalized the ARIMA model to deal
with seasonality, and define a general multiplicative
seasonal ARIMA model, which are commonly known as
SARIMA models. In short notation the SARIMA
model described as ARIMA (p, d, q) (P, D, Q)s, where
(p, d, q) is the non-seasonal part of the model and (P, D,
Q)s is the seasonal part of the model, which is mentioned
below:

/pðBÞUP ðBsÞrdrD
s zt ¼ hqðBÞHQðBsÞat ð4Þ

where p is the order of non-seasonal autoregression, d
the number of regular differencing, q the order of non-
seasonal MA, P the order of seasonal autoregression, D
the number of seasonal differencing, Q the order of
seasonal MA, s is the length of season.

The time series model development consists of three
stages, i.e. identification, estimation and diagnostic
check (Box and Jenkins 1976), which are available in
literatures and time series books.

3 Case study

The physical area considered in this study is the portion
of the Kansabati river basin (Fig. 1) upstream from the
Kangsabati dam, in the extreme western part of West
Bengal state in eastern India. The region has an area of
4265 km2. The elevation ranges from minimum of 110 m
to a maximum of 600 m. The average elevation of the
region is approximately 200 m. The basin experiences
very hot summer and temperature in the region reaches
up to 45�C in May and June. Generally the dry periods
are accompanied with high temperatures, which lead
higher evaporation affecting natural vegetation and the
agriculture of the region along with larger water re-
source sectors. The mean annual precipitation in the

Fig. 1 Location of precipitation stations used in the study
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basin is about 1268 mm. Mainly three rivers are con-
tributing the flow in Kansabati catchment that is Kan-
sai, Kumari, and Tongo. There is Kansabati dam
constructed at the confluence of three rivers in Purulia
district. The waters primarily used for irrigation. The
major crops grown in the catchment are paddy, maize,
pulses, and vegetables. It is considered a drought prone
area with irregular rainfall and the soils are mostly lat-
erite in nature having a low water holding capacity.
About 50–60% of the study area is upland, which is
managed by the poor farmers. Lands are mostly mono-
cropped having limited surface irrigation facilities. The
water demand due to the extensive cultivation leads to
over-exploitation of groundwater resources. The over-
exploitation of groundwater, especially in summer has
led to degradation of water resources. Irrigated crops are
not widespread because there is not always enough wa-
ter for the purpose. For this study, five rain gauge sta-
tions were considered and monthly rainfall data was
procured for the period from 1965 to 2001. The statis-
tical properties of rainfall series along with their geo-
graphic location are shown in Table 1. The data for
these backward areas are very difficult to get and that
too not for long periods. Wei (1990) stated that the
minimum number of 50 observations is needed to build
reasonable ARIMA model, which is reasonably correct
in the present study. The minimum rain gauge density
for flat regions of temperate Mediterranean and Tropi-
cal zone is one station per 600–900 km2 (according to
World Meterological Organization), which seems rea-
sonably correct for present study. In India the rain
gauge density is about 1.7 gauges/1000 km2 area.
Understanding the difficulties about rain gauge density
and importance of the basin, the present work is carried
out based on the average rainfall over the basin.

4 Standardized precipitation index (SPI) for drought
analysis

In the present study SPI is used as drought index, due to
its several advantages as mentioned earlier. A deficit of
precipitation impacts on soil moisture, stream flow,
reservoir storage, and groundwater level, etc. at different
time scales. McKee et al. (1993) developed the SPI to
quantify precipitation deficits on multiple time scales.

Shorter or longer time scales may reflect lags in the re-
sponse of different water resources to precipitation
anomalies. McKee et al. (1993) defined the criteria for a
‘‘drought event’’ for any time scales. A drought event
occurs at the time when the value of SPI is continuously
negative. The event ends when the SPI becomes positive.
Weather classification based on SPI is shown in Table 2.

After the conceptualization of SPI, many researchers
in drought studies have used it. Bussay et al. (1999)
and Szalai and Szinell (2000) assessed the utility of SPI
for describing droughts in Hungary. They concluded
that SPI was suitable for quatifying most types of
drought events. Stream flow was best described by SPIs
with time scale of 2–6 months. Strong relationships
between SPI and ground water level were found at time
scales of 5–24 months. Agricultural drought (quantified
by soil moisture content) was indicated by the SPI on a
scale of 2–3 months. More recently Lana et al. (2001)
have used the SPI to investigate patterns of rainfall
over Catalonia, Spain while Hughes and Saunders
(2002) have studied drought climatology for the entire
Europe based on SPI values at time scales of 3, 6, 9,
12, 18, and 24 months for the period 1901–1999.
Mishra and Desai (2005) studied the spatial and tem-
poral variation of drought over Kansabati basin in
India using SPI as the drought index.

4.1 Computation of SPI

The SPI is computed by fitting a probability density
function to the frequency distribution of precipitation
summed over the time scale of interest. This is per-
formed separately for each month (or any other tem-
poral basis of the raw precipitation time series) and for
each location in space. Each probability density function
is then transformed into a standardized normal distri-
bution.

The gamma distribution is defined by its probability
density function as

gðxÞ ¼ 1

baCðaÞ x
a�1e�x=b for x > 0 ð5Þ

where a(> 0) is a shape factor, b(> 0) is a scale factor,
and x > 0 is the amount of precipitation. C (a) is the
gamma function which is defined as

Table 1 Raingauge stations in the Kansabati river basin

Raingauge
stations

Elevation
(m) (a.m.s.l)

Geographic
coordinates

Statistical properties of annual rainfall series (1965–2001)

Latitude Longitude Mean (mm) Max (mm) Min (mm) Standard deviation Skewness Kurtosis

Simulia 220.97 23� 10¢ 86� 22¢ 1300.68 1840 828 260.32 0.174 �0.605
Rangagora 222.92 23� 4¢ 86� 24¢ 1152.57 1729 743 219.1 0.782 0.656
Tusuma 158.6 23� 08¢ 86� 43¢ 1268.3 1683 746 239.31 �0.221 �0.547
Kharidwar 135.96 23� 00¢ 86� 38¢ 1216.97 1814 827 248.2 0.637 �0.306
Phulberia 144.32 22� 55¢ 86� 37¢ 1345.7 2081 674 322.73 0.329 �0.006
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CðaÞ ¼
Z1

0

ya�1e�ydy ð6Þ

Fitting the distribution to the data requires that a
and b be estimated. For this Edwards and McKee
(1997) suggested a method using the approximation of
Thom (1958) for maximum likelihood as follows:

a
^ ¼ 1

4A
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4A

3

r !
ð7Þ

b
^
¼ x
�

a
^ ð8Þ

where

A ¼ lnðx�Þ �
P

lnðxÞ
n

for n observations ð9Þ

The resulting parameters are then used to find the
cumulative probability of an observed precipitation
event for the given month or any other time scale.

GðxÞ ¼
Zx

0

gðxÞdx ¼ 1

b
^a
^

Cða^Þ

Zx

0

xa
^�1e�x=b

^

dx ð10Þ

Substituting t for x=b
^
reduces Eq. 6 to incomplete

gamma function:

GðxÞ ¼ 1

CðâÞ

Zx

0

tâ�1e�1dt ð11Þ

Since the gamma function is undefined for x = 0 and
a precipitation distribution may contain zeros, the
cumulative probability becomes:

H (x) ¼ uþ (1� u) G(x) ð12Þ

where u is the probability of zero precipitation.
The cumulative probability, H(x) is then transformed

to the standard normal random variable Z with mean
zero and variance one, which is the value of SPI. Fol-
lowing Edwards and McKee (1997), Hughes and Saun-
ders (2002), an approximate conversion is used in this
paper, as provided by Abramowitz and Stegun (1965) as
an alternative:

Z ¼ SPI ¼ � k � c0 þ c1k þ c2k2

1þ d1k þ d2k2 þ d3k3

� �

for 0\HðxÞ � 0:5

ð13Þ

Table 2 Weather classification based on SPI

SPI values Class

> 2 Extremely wet
1.5–1.99 Very wet
1.0–1.49 Moderately wet
�0.99 to 0.99 Near normal
�1 to �1.49 Moderately dry
�1.5 to�1.99 Severely dry
< �2 Extremely dry

Fig. 2 SPI time series based on the average rainfall over the Kansabati basin
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Z ¼ SPI ¼ þ k � c0 þ c1k þ c2k2

1þ d1k þ d2k2 þ d3k3

� �

for 0:5\HðxÞ\1

ð14Þ

where

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

1

ðHðxÞÞ2

" #vuut for 0\HðxÞ � 0:5 ð15Þ

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

1

ð1� HðxÞÞ2

" #vuut for 0:5\HðxÞ\1 ð16Þ

and c0 ¼ 2:515517 c1 ¼ 0:802853 c2 ¼ 0:010328 d1 ¼
1:432788 d2 ¼ 0:189269 d3 ¼ 0:001308:

The statistical tests, Kolgomorov–Smirnov (K–S)
and Chi-square tests show that rainfall in the basin
follows a gamma distribution. The regional time series
of SPI value is calculated using the mean areal rainfall
over the Kansabati basin. The time series of SPI 3, SPI
6, SPI 9, and SPI 12 are shown in Fig. 2.

5 Results and discussion

5.1 Model development

Time series model development consists of three stages
identification, estimation, and diagnostic checking (Box
and Jenkins 1976; Bras and Rodriguez-Iturbe 1985;
Makridakis et al. 2003). The identification stage involves
transforming the data (if necessary) to improve the
normality and the stationarity of the time series and
determining the general form of the model to be esti-
mated. During the estimation stage the model parame-
ters are calculated using the method of moments, least
square methods, or maximum likelihood methods. Fi-
nally, diagnostic checks of the model are performed to
reveal possible model inadequacies and to assist in
selecting the best model. The data set from 1965 to 1994
is used for model development for SPI 3, SPI 6, and SPI
9 and SPI 12 series. The data set for SPI 24 is from 1965
to 1989 is used to have longer testing set (as these type of
drought are rare). The models were developed for SPI 3,
SPI 6, SPI 9, SPI 12, and SPI 24. For illustration, two
examples were described briefly (for SPI 3 and SPI 12).
The model identified for SPI 3 is a ARIMA model and
for SPI 12 is a SARIMA model, so these two series were
identified for the illustration purpose.

5.1.1 Identification

Identification of the general form of a univariate model
involves two steps. First, the data series is analyzed
for stationarity and normality. Appropriate differencing
of the series is performed (if necessary) to achive
stationarity and normality. Second, the temporal

correlation structure of the transformed data are iden-
tified by examining its autocorrelation (ACF) and par-
tial autocorrelation (PACF) functions (Box and Jenkins
1976). This information is then used to determine the
general form of the univariate model to be fit.

The ACF and PACF are estimated for SPI-3, as
shown in Fig. 3. The ACF and PACF show the series is
stationary. The ACF is damping out in sine-wave
manner with significant spikes at the first two lags. The
first five values are significant in PACF, which indicates
the process can be modeled as a combination of both
AR and MA processes. Alternative ARIMA models
were identified by considering the ACF and PACF
graphs of the SPI series. This indicates a possible AR-
IMA (p, 0, q) model with p = 1–5 and q = 1–3. So all
the combination were tried to determine the best model
out of these candidate models. The model that gives the
minimum Akaike Information Criterion (AIC) and
Schwarz Bayesian Criterion (SBC) is selected as best fit
model. Usually the model with the smallest AIC will
have residuals, which resemble white noise (Makridakis
et al. 2003). The mathematical formulation for the AIC
(Akaike 1974) is defined as:

AIC ¼ �2 log Lþ 2m ð17Þ

where m = (p + q + P + Q) is the number of terms
estimated in the model and L denotes the likelihood
function of the ARIMA models and it is a monotoni-
cally decreasing function of the sum of squared residu-
als. The mathematical formulation for the SBC
(Schwarz 1978) is defined as:

SBC ¼ �2 log Lþ m lnðnÞ ð18Þ

where n denotes the number of observations.
In the original time series of SPI 12, it is observed

that ACF curve decays with mixture of sine and expo-
nential curve and in PACF there is significant lag at 1,
which suggests AR process. In the PACF, there are
significant spikes present near lag 12, 24, and 36. So the
series was seasonally differenced with 12 as period. The
plot of ACF and PACF after seasonal difference is
shown in Fig. 4. In the seasonal differenced series of SPI
12, it is observed that the ACF curve decay fast with a
mixture of sine and exponential waves. In the PACF
there is a significant spike at lag 1, which indicates an
AR (1) as non-seasonal part of model. The significant
spike at 12 and 24 in PACF indicates a SARIMA model.
The best model out of different candidate models is
identified using minimum AIC and SBC criteria. The
identification of best model for different SPI series based
on minimum AIC and SBC criteria is shown in Table 3.

5.1.2 Parameter estimation

After the identification of model using the AIC and SBC
criteria, estimation of parameters is done. During the
estimation stage, model estimates were calculated
simultaneously for AR and MA parameters. Model
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estimates were made using the procedure outlined by
Box and Jenkins (1976). Preliminary estimates of the
parameters were computed from the ACF of the series
developed in the identification stage. These preliminary
estimates were then used as the starting values in an

iterative Marquarardt optimization algorithm for non-
linear least squares that minimize the residual sum of
squares.

The value of the parameters, associated standard er-
rors, t-ratios and p-values are listed in Table 4. The

Fig. 3 ACF and PACF plots
used for the selection of
candidate models for SPI 3
series

Fig. 4 ACF and PACF plots
used for the selection of
candidate models for SPI 12
series
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standard errors calculated for the model parameters
were generally small compared to the parameter values.
Therefore most of the estimates of parameters are sta-
tistically significant and these parameters should be in-
cluded in the models.

5.1.3 Diagnostic check

The model having been identified and the parameters
estimated, diagnostic checks are then applied to the fit-
ted model to verify that the model is adequate. The

Table 3 Comparison of AIC
and SBC for selected candidate
models

SPI series MODEL AIC SBC

SPI-3 ARIMA (5,0,0) 393.8496 405.7677
ARIMA (5,0,1) 393.2485 411.1502
ARIMA (5,0,2) 392.9962 401.0815
ARIMA (4,0,0) 394.0761 401.8105

SPI-6 ARIMA (1,0,0) 394.9166 404.1272
ARIMA (1, 0, 0) (1, 0, 0)6 399.3026 405.3239
ARIMA (1, 0, 0) (2, 0, 1)6 403.3026 415.3452
ARIMA (1, 0, 0) (3, 0, 1)6 403.3788 418.4320
ARIMA (1, 0, 0) (4, 0, 1)6 406.1496 424.2134
ARIMA (1, 0, 0) (1, 1, 1)6 394.74583 403.7777
ARIMA (1, 0, 0) (2, 1, 1)6 98.8442 410.8868
ARIMA (1, 0, 0) (3, 1, 1)6 400.8442 415.8974

SPI-9 ARIMA (1,0,0) 384.5656 387.5763
ARIMA (1, 0, 0) (1, 0, 0)9 386.9911 393.0124
ARIMA (1, 0, 0) (2, 0, 1)9 392.2528 404.2954
ARIMA (1, 0, 0) (2, 1, 1)9 405.0011 417.0436
ARIMA (1, 0, 0) (3, 1, 1)9 384.0637 487.0169

SPI-12 ARIMA (0, 0, 1) 379.4519 382.4625
ARIMA (1, 0, 0) (2, 1, 0)12 368.9238 377.9557
ARIMA (1, 0, 0) (3, 1, 0)12 371.1187 383.1613
ARIMA (1,0,0)(0,1,1)12 369.0126 378.0339
ARIMA (2, 0, 0) (1, 1, 1)12 375.8339 387.8765
ARIMA (2, 0, 0) (2, 1, 1)12 372.1500 387.2032

SPI-24 ARIMA (1, 0, 0) 345.5579 348.5685
ARIMA (1, 0, 0) (1, 0, 0)12 347.5618 353.5831
ARIMA (1, 0, 0) (2, 0, 0)12 367.3457 376.3777
ARIMA (1,0,0)(1,1,0)24 373.3837 379.4050
ARIMA (1,0,0)(2,1,0)24 341.2924 350.3243
ARIMA (1,0,0)(3,1,0)24 352.4660 364.5086
ARIMA (1,0,0)(0,1,1)24 328.1283 334.1495
ARIMA (1,0,0)(1,1,1)24 353.0663 362.0982

Table 4 Statistical analysis of model parameters

SPIs series Model parameters Variables in the model

Value of parameters Standard error t-ratio P < 0.05

SPI 3 /1 0.7219 0.0662 10.91 0.000
/2 �0.794 0.0766 �10.37 0.000
/3 0.2617 0.0775 3.38 0.001
/4 0.1445 0.0669 2.16 0.031
/5 �0.2098 0.0534 �3.93 0.000
h 1 �0.0404 0.0466 �0.87 0.387
h 2 �0.8932 0.0367 �24.35 0.000

SPI 6 /1 0.7833 0.0308 25.42 0.000
U1 �0.3157 0.0477 �6.62 0.000
H1 0.9675 0.0204 47.46 0.000

SPI 9 /1 0.9170 0.0199 46.03 0.000
U1 �0.5760 0.0529 �10.89 0.000
U2 �0.3176 0.0591 �5.37 0.000
U3 �0.1224 0.0532 �2.30 0.022
H1 0.9537 0.0243 39.30 0.000

SPI 12 /1 0.9684 0.0125 77.67 0.000
U1 �0.6083 0.0476 �12.78 0.000
U2 �0.2764 0.0484 �5.72 0.000

SPI 24 /1 0.9529 0.0156 61.19 0.000
h 1 0.8979 0.0413 21.75 0.000
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residuals are studied to see if any pattern remains
unaccounted for. For a good forecasting model, the
residuals left over after fitting the model should be white
noise. All validation tests are carried out on the residual
series only. The tests are summarized briefly in the fol-
lowing paragraph.

5.1.3.1 ACF and PACF of residuals The residual ACF
function (RACF) should be obtained to determine
whether residuals are white noise. There are two useful
applications related to RACF for the independence of
residuals. The first is the correlogram drawn by plot-
ting rk against lag k, where rk is the residual ACF
function. If some of the RACFs are significantly dif-
ferent from zero, this may indicate that the present
model is inadequate. The ACF and PACF of residuals

for SPI 3 and SPI 12 are shown in Figs. 5a, b and 6a,
b. Most of the values lies within confidence limits ex-
cept very few individual correlations appear large
compared with the confidence limits, which is expected
among 65 lags. The figure indicates no significant
correlation between residuals.

5.1.3.2 Histogram of residuals Histograms of residuals
for SPI-3 and SPI-12 are shown in Figs. 5c and 6c. These
histogram shows the residuals are normally distributed.
This signifies residuals to be white noise.

5.1.3.3 Normal probability of residuals The graph of the
cumulative distribution for the residual data normally
appears as a straight line when plotted on normal
probability paper (Chow et al. 1988). The plots of SPI 3

Fig. 5 Diagnostic check for best fitted model for SPI 3 series
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and SPI 12 are shown in Figs. 5d and 6d. The figures
show the normal probability plot of the residuals look
fairly linear, the normality assumptions of the residuals
hold (Durbin 1960).

5.1.3.4 Residual values versus forecast values Residuals
are plotted against forecast values. The SPI-3 and
SPI-12 are shown in Figs. 5e and 6e. These figures
indicate residuals are evenly distributed around mean,
which shows models are adequate (Govindaswamy
1991).

5.1.3.5 Periodogram check The significance of period-
icities in the residual series can be tested using the
cumulative periodogram test, also known as Bartletts

test (Bartlett 1946). This test provides an effective
means for the detection of periodic nonrandomness. If
a significant periodicity is observed, the next signifi-
cant periodicity will be detected by carrying out the
test from which the first periodicity is removed, and so
on. The test is briefly described below.

The periodogram of a time series at, where t = 1, 2,
3,..., n, is defined as

c2i ¼
2

n

Xn

t¼1
at cosð2pfitÞ

 !2

þ
Xn

t¼1
at sinð2pfitÞ

 !2
2
4

3
5

ð19Þ

Where fi = i/n is the frequency i = 1, 2,..., N/2 here N
the number of observations is even.

Fig. 6 Diagnostic Check for best-fitted model for SPI 12 series
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Table 5 K-S test and Q(r)stat calculation of residuals for SPIs series

SPI Model K–S test Q(r)stat Degrees of
freedom

v2 distribution

Dtab Dcal

SPI 3 ARIMA (5, 0, 2) 0.1461 0.0407 57.2939 43 59.282
SPI 6 ARIMA (1, 0, 0) (1, 1, 1)6 0.1461 0.0768 54.3466 47 63.978
SPI 9 ARIMA (1, 0, 0) (3, 1, 1)9 0.1461 0.1124 54.2845 45 61.63
SPI 12 ARIMA (1, 0, 0) (2, 1, 0)12 0.1461 0.1268 62.8763 47 63.978
SPI 24 ARIMA(1,0,0)(0,1,1)24 0.1461 0.1315 64.8691 48 65.152

Fig. 7 Comparison of observed data with predicted data using best ARIMA models
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Compute

gi ¼

Pi

j¼1
c2j

PN=2
i¼1

c2i

ð20Þ

It is observed that gi lies between 0 and 1. The plot of
giversus fi is known as cumulative periodogram. If all the
values of gi lie within the significance band, then there is
no significant periodicity present in the series.

The cumulative periodogram for the residuals of
different series are shown in Figs. 5f and 6f. It is ob-
served all the values of gi lie within the significance band,
which confirms that no significant periodicity is present
in the residual series at 95% confidence level.

5.1.3.6 Portmantateau lack-of-fit test The modified
Ljung–Box–Pierce statistics proposed by Ljung and Box
(1978) is used in this study to test the adequacy of the
model. The modified Ljung–Box–Pierce statistic, i.e, Q
(r) statistic is calculated as (Makridakis et al. 2003):

QðrÞ ¼ nðnþ 2Þ
Xk

k¼1
ðn� kÞ�1r2k ð21Þ

Here n is the number of observations in series. The
first 50 ACF of the residuals from the model are taken
for calculation of Q (r)stat shown in Table 5. These Q
(r)stat values are compared with v 2distribution with
respective degree of freedom at a 5% significant level. It
is observed that the calculated value is less than the
actual v 2value, which signifies that the present models
are adequate on the available data.

5.1.3.7 Kolgomorov–Smirnov (K–S) tests This is a non-
parametric test used to test the normality of residuals
from different set of models of the fit of data (Haan
1977)

Dcal ¼ max/Px(x)� Sn(x)/ ð22Þ

where Dcal is the maximum deviation, Px(x) the com-
pletely specified theoretical cumulative distribution
function under the null hypothesis, Sn(x) is the sample
cumulative density function based on n observations.

For a chosen significance level a, the value of Dcal

statistics is compared with table Dtab statistics. If Dcal is
greater than the critical value Dtab, the null hypothesis
related to normality is rejected for the chosen level of
significance.

The K–S test is used to test the normality of residuals
from different set of models. It is observed that for all
models the Dcal is less than than Dtab at 5% significant
level, shown in Table 5.This test satisfies that the resid-
uals are normally distributed.

5.2 Drought forecasting from selected models

The forecast was done for 1-month lead-time using the
best models from historical data. The data set from
1994 to 2001 is used for validating model for SPI 3,
SPI 6, SPI 9, and SPI 12. The testing data set for SPI
24 is from 1990 to 2001. The different data set is taken
for SPI 24 because these droughts are rare and to in-
clude the droughts of 1990s. The plot between observed
data and predicted data using the selected best model
for all SPI series is shown in Fig. 7. It is observed that
the predicted data follows the observed data very clo-
sely. Basic statistical properties are compared between
observed and forecasted data for one month lead time,
using Z-test for the means and F-test for standard
deviation (Haan 1977), shown in Table 6. Since Zcal

values related to means were between Z-critical table
values (±1.96 for two tailed at a 5% significance level),
the data shows that there is no significant difference
between the mean values of observed and predicted
data. Similarly, the Fcal values of standard deviation
were smaller than the F-critical values at a 5% signif-

Table 6 Comparison of statistic properties of the observed and predicted data

SPI series Mean
observed

Mean
forecasted

Decision
|zcal| < 1.96

Variance
observed

Variance
forecasted

Decision
Fcal < Ftab

SPI 3 0.2619 0.15 0.5966 2.06 1.02 0.4952 < 1.462
SPI 6 0.4498 0.4251 0.1347 1.7446 1.0672 0.6117 < 1.462
SPI 9 0.6279 0.5919 0.2039 1.4613 1.1523 0.7886 < 1.462
SPI 12 0.7307 0.7102 0.1198 1.2663 1.1979 0.946 < 1.462
SPI 24 0.7540 0.7366 0.1851 0.6419 0.6175 0.9619 < 1.00

Table 7 Coefficient of
correlation between observed
and predicted data for different
lead-time

SPI series 1-month
lead-time

2-month
lead-time

3-month
lead-time

4-month
lead-time

5-month
lead-time

6-month
lead-time

SPI 3 0.801 0.66192 0.4459 0.3234 0.2782 0.2073
SPI 6 0.799 0.6176 0.411 0.352 0.283 0.219
SPI 9 0.877 0.7298 0.595 0.5078 0.444 0.388
SPI 12 0.925 0.828 0.73 0.648 0.56 0.476
SPI 24 0.9055 0.797 0.714 0.654 0.619 0.588
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icance level. Thus, the results show that predicted data
preserves the basic statistical properties of the observed
series. The forecast is done with 1-month to 6-month
lead-time. For example 1-month ahead forecast means
that during April 2000 the forecast for May 2000 is
done. Coefficient of correlation between observed and
predicted data for different lead-time is shown in Ta-
ble 7.It is observed that with a longer and longer lead-
time the coefficient of correlation decreases between
observed and predicted data. Therefore the selected
best models from ARIMA building approach using a
time series data of SPI series can be used for the
drought forecasting.

6 Conclusion

Droughts being pernicious and creeping phenomena
than other climatic events, it becomes difficult to pre-
dict drought in a basin. Like many other river basins
forecasting drought is of utmost importance in the
Kansabati river basin for planning and optimal oper-
ation of irrigation systems as agriculture is the primary
activity in the basin. This study was focused on
drought forecasting using SPI as a drought indicator.
The SPI is used due to its lot of advantages over other
drought indices and it is used to quantify most type of
drought. The seasonal ARIMA model developed for
different SPI series using the correlation methods of
Box and Jenkins and the AIC and SBC structure
selection criteria. In the present investigation it is ob-
served that, when the moving window series is plotted
for ACF and PACF then the seasonal effect will arise
due to the moving window effect. So it is important to
remove these seasonal effects using moving window
length as seasonal period. Among the best models it is
observed that the MA parameters in non-seasonal part
vanishes which may be due to cancellation of MA part
of original series with MA part of filter. The stochastic
models developed to forecast drought found to give
reasonably good results up to 2-month lead-time. The
results seem to be better for higher SPI series (SPI 9,
SPI 12, and SPI 24) and even can be used up to 3-
month lead-time. These results may be due to increase
in filter length which reduces the noise more effectively.
So it is recommended that linear stochastic models can
be used in this and other hydrometerologically similar
basins for forecasting SPI series of multiple time scales
to know the drought severity in future. These stochastic
models developed in Kansabati basin can be used for
the development of a drought preparedness plan in the
region so as to ensure sustainable water resource
planning within the basin.
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